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Search Procedures for the Executability

Problem

We fix a transition system A = 〈S, T, α, β, is〉 and a set G ⊆ T of goal tran-
sitions. We wish to solve the problem of whether some history of A executes
some transition of G by means of a finite, sound, and complete search proce-
dure. It is not difficult to see that such procedures exist; for instance depth-first
or breadth-first search will do the job. However, we wish to prove a stronger
result, namely the existence of a search scheme that leads to a terminating,
sound, and complete search procedure for every search strategy. In this section
we formalize the notion of strategy, and in the next one we proceed to define
the search scheme.

To define search strategies, it is convenient to define the notion of order :

Definition 4.1. An order is a relation that is both irreflexive and transitive.

Orders are often called strict partial orders in the literature but we use the
term order for brevity.
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Recall that, loosely speaking, a search strategy determines, given the cur-
rent prefix, which of its possible extensions should be added to it next. So, in
full generality, a search strategy can be defined as a priority relation or as an
order between branching processes. Assume the current branching process is
N with possible extensions e1, . . . ek, and for every i ∈ {1, . . . , k} let Ni be
the result of adding ei to N . Then the event ej such that Nj has the highest
priority among N1, . . . ,Nk is the one selected to extend N . In terms of orders,
we select an event ej such that Nj is minimal according to the order.

Given two events e1, e2, there can be many different branching processes
having e1 and e2 as possible extensions. For some of them the priority relation
may prefer e1 to e2, while for others it may be the other way round. Such
strategies can be called “context-dependent”, since the choice between e1 and
e2 does not only depend on e1 and e2 themselves, but also on their context.
For simplicity, we restrict our attention to “context-free” strategies in which
the choice between e1 and e2 depends only on the events themselves.

Notice that, from a computational point of view, it does not make sense
to define strategies as priority relations (i.e., orders) on events. The reason
is that the events are what the search procedure has to compute, and so the
procedure does not know them in advance. To solve this problem we introduce
the notion of an event’s history.
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Definition 4.2. Let e be an event of the unfolding of A, and let e1e2 . . . em be
the unique occurrence sequence of the unfolding and ending with e, i.e., em =
e. The history of e, denoted by H(e), is the computation t1t2 . . . tm, where ti
is the label of ei. We call the events e1, . . . , em−1 the causal predecessors of
em. We denote by e′ < e that e′ is a causal predecessor of e. The state reached
by H(e), denoted by St(e), is defined as β(e), i.e., as the state reached after
executing e.
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Example 4.3. In the unfolding of Fig. 3.4 on p. 21 the history of event 7 is
H(7) = t1 t3 t5 t1, and the state reached by

St(7) = s2. The causal

predecessors of event 7 are the events 1, 3, and 5. We have, for

H(7) = H(3) t5 t1.



Model Checking -  Kapitel 6 - Teil 2
4

Proposition 4.4. An event is characterized by its history, i.e., e = e′ holds
if and only if H(e) = H(e′).

This proposition allows us to define strategies as orders on the set of all
words, i.e., as orders ≺ ⊆ T ∗ × T ∗. Since histories are words and events are
characterized by their histories, every order on words induces an order on
events. Moreover, since the set T is part of the input to the search procedure,
it makes perfect computational sense to define a strategy like “choose among
the possible extensions to the current prefix anyone having a shortest history”.

Abusing notation, the order on events induced by an order ≺ on words is
also denoted by ≺. The order need not be total (i.e., there may be distinct
events e, e′ such that neither e ≺ e′ nor e′ ≺ e holds). However, we require
that ≺ refines the prefix order on T ∗, i.e., for every w, w′ ∈ T ∗, if w is a proper
prefix of w′, then w ≺ w′.1 The reason is that if H(e) is a proper prefix of
H(e′) then e′ can only be added to the unfolding after e, and so e′ should
have lower priority than e.

Definition 4.5. A search strategy on T ∗ is an order on T ∗ that refines the
prefix order.

Notice that e is a causal predecessor of e′ if and only if H(e) is a proper
prefix of H(e′). Therefore, if e < e′ then H(e) ≺ H(e′) and so e ≺ e′. We say
that a search strategy refines the causal order on events.
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4.2 Search Scheme for Transition Systems

We are ready to present a search scheme for the executability problem that is
sound and complete for every search strategy. A search scheme is determined
by its terminals and successful terminals, which we now define. The definition
of terminals may look circular at first sight (terminals are defined in terms of
the auxiliary notion of feasible events, and vice versa) but, as we shall see, it
is not.

Definition 4.6. Let ≺ be a search strategy. An event e is feasible if no event
e′ < e is a terminal. A feasible event e is a terminal if either

(a) it is labeled with a transition of G, or
(b) there is a feasible event e′ ≺ e, called the companion of e, such that

St(e′) = St(e).

A terminal is successful if it is of type (a). The ≺-final prefix is the prefix of
the unfolding of A containing the feasible events.
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In order to prove that the set of terminal events is well-defined we need a
lemma.

Lemma 4.8. Let ≺ be an arbitrary search strategy, and let (F, T ) be a pair of
sets of events satisfying the conditions of Def. 4.6 for the sets of feasible and
terminal events, respectively. Then for every feasible event e ∈ F the history
H(e) has length at most |S| + 1.

Proof. Assume that e is a feasible event such that the length of H(e) is
larger than |S| + 1. Then, by the pigeonhole principle, there are two events
e1 < e2 < e such that St(e1) = St(e2). Since e ∈ F , no event e′ < e belongs
to T , and so the same holds for e1 and e2. It follows e1, e2 ∈ F . Since e1 < e2

and the search strategy ≺ refines the causal order, we have e1 ≺ e2, and, by
condition (b), e2 ∈ T . Since e2 < e, the event e cannot be feasible, contra-
dicting the assumption. !
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A direct corollary of the proof above is that for all non-terminal events e the
length of H(e) is at most |S|.

Proposition 4.9. The search scheme of Def. 4.6 is well-defined for every
strategy ≺, i.e., there is a unique set of feasible events and a unique set of
terminal events satisfying the conditions of the definition. Moreover, the ≺-
final prefix is finite.

The soundness of the scheme for every strategy is also easy to pr

Proposition 4.10. The search scheme of Def. 4.6 is sound for every strategy.
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We now show that the search scheme is also complete for every search
strategy. We present the proof in detail, because all the completeness proofs
in the rest of the book reuse the same argumentation. It proceeds by con-
tradiction: it is assumed that the product satisfies the property, but the final
prefix is not successful. First, a set of witnesses is defined; these are the events
of the unfolding “witnessing” that the property holds, i.e., if the search al-
gorithm would have explored any of them then the search would have been
successful. Second, an order on witnesses is defined; it is shown that the or-
der has at least one minimal element em, and, using the assumption that the
search was not successful, a new event e′m is constructed. Third, it is shown
that e′m must be smaller than em w.r.t. the order on witnesses, contradicting
the minimality of em.
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Theorem 4.11. The search scheme of Def. 4.6 is complete for every strategy.

Proof. Let ≺ be an arbitrary search strategy. Assume that some goal tran-
sition g ∈ G is executable, but no terminal of the ≺-final prefix is successful.
We derive a contradiction in three steps.

Witnesses. Let an event of the unfolding of A be a witness if it is labeled
with g. Since g is executable, the unfolding of A contains witnesses. However,
no witness is feasible, because otherwise it would be a successful terminal. So
for every witness e there is an unsuccessful terminal es < e. We call es the
spoiler of e. (see Fig. 4.3).

e′m em

ese′

g

cs cs

g

≺

Fig. 4.3. Illustration of the proof of Thm. 4.11
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Minimal witnesses. Let e be a witness and let es be its spoiler. Since es < e,
some computation c satisfies H(es)c = H(e). Let l(e) denote the (finite) length
of c. We define an order ! on witnesses as follows: e ! e′ if either l(e) < l(e′)
or l(e) = l(e′) and es ≺ e′s.

We claim that ! is well-founded. Assume this is not the case. Then there
is an infinite decreasing chain of witnesses e1

w # e2
w # e3

w . . ., and because
l(ei

w) can only decrease a finite number of times, we must from some index
j onwards have an infinite decreasing chain of spoilers ej

s $ ej+1
s $ ej+2

s . . ..
Thus, since spoilers are terminals, the set of terminals must be infinite. So the
≺-final prefix is infinite, contradicting Prop. 4.9. This proves the claim.

-final prefix is infinite, contradicting Prop. 4.9. This prove
Since ! is well-founded, there is at least one !-minimal witness em. Let es

be the spoiler of em and let cs be the unique computation satisfying H(em) =
H(es)cs. Notice that, since em is labeled by g, the computation cs ends with
g. Since es is an unsuccessful terminal, it has a companion e′ ≺ es such
that St(e′) = St(es). Since St(e′) = St(es), both H(es)cs and H(e′)cs are
histories of A. Let e′m be the event having H(e′)cs as history, i.e., H(e′m) =
H(e′)cs. Since cs ends with g, the event e′m is also labeled by g, like em. So
e′m is a witness, and has a spoiler e′s. Let c′s be the computation satisfying
H(e′m) = H(e′s)c

′
s.

c′
s

e′
s
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Contradiction. Since H(e′s)c
′
s = H(e′m) = H(e′)cs, we have e′ < e′m and

e′s < e′m. So there are three possible cases:

• e′s < e′. Then, since e′s is a spoiler and spoilers are terminals, e′ is not
feasible, contradicting our assumption that e′ is the companion of es, which
according to Def. 4.6 requires e′ to be feasible.

• e′s = e′. Then, since H(e′s)c
′
s = H(e′m) = H(e′)cs, we have cs = c′s.

Moreover, since e′s = e′ and e′ ≺ es we have e′s ≺ es. This implies e′m " em,
contradicting the minimality of em.

• e′ < e′s. Then, since H(e′s)c
′
s = H(e′m) = H(e′)cs, the computation c′s is

shorter than cs, and so e′m " em, contradicting the minimality of em.

!

The next example shows that the size of the final prefix depends on the
choice of strategy. In the worst case, the final prefix can be exponentially
larger than the transition system.
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One way to make the final prefix smaller is to require the strategy ≺ to
be a total order.

Theorem 4.13. If ≺ is a total order on T ∗, then the ≺-final prefix of Def. 4.6
has at most |S| feasible non-terminal events.

Proof. If ≺ is total, then, by condition (b) in the definition of a terminal, we
have St(e) "= St(e′) for any two feasible non-terminal events e and e′. So the
final prefix contains at most as many non-terminal events as there are states
in A. !
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4.3 Search Strategies for Products

We fix a product A = 〈A1, . . . ,An,T〉 of transition systems, where Ai =
〈Si, Ti, αi, βi, isi〉, and a set of goal global transitions G ⊆ T. We wish to solve
the problem of whether some global history of A executes some transition of
G. Our goal is to generalize Def. 4.6 to a search scheme for an arbitrary
product of transition systems.

In this section we generalize the notion of a search strategy to products.
Recall that, intuitively, a search strategy determines the order in which new
events are added when constructing the unfolding. In the transition system
case we modeled strategies as order relations on T ∗. This was possible because
an event was uniquely determined by its history, and so an order on T ∗ induced
an order on events. However, in the case of products, an event does not have
a unique history, as illustrated by the example below.
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Example 4.14. Consider event 10 in the unfolding of Fig. 3.3 on p. 17. Recall
that this is the unfolding of the product of Fig. 2.2 on p. 7. Many occurrence
sequences of events contain this event, and all of them correspond to histories
of the product. Here are some examples:

Event sequence History
1 3 4 7 6 1210 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 〈ε, u1〉 〈t1, ε〉
1 3 4 6 10 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉
3 1 4 6 10 〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉
1 3 4 6 107 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉 〈ε, u3〉
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4.3.1 Mazurkiewicz Traces
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The definition of Mazurkiewicz traces is based on the notion of independence
of transitions. Recall that a component Ai of A participates in the execution
of a global transition t = 〈t1, . . . , tn〉 when ti #= ε. We define:

Definition 4.15. Two global transitions are independent if no component Ai

of A participates in both of them.

Example 4.16. The transitions 〈t1, ε〉 and 〈ε, u1〉 of the product of Fig. 2.2 on
p. 7 are independent, but the transitions 〈t1, ε〉 and 〈t4, u2〉 are not, because
A1 participates in both of them.

It follows easily from this definition that a pair t and u of independent tran-
sitions satisfies the following two properties for every w,w′ ∈ T∗:

(1) if wtuw′ is a history of A, then so is wutw′ ; and
(2) if wt and wu are histories of A, then so are wtu and wut .
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The independence relation induces an equivalence relation on the set T∗

of transition words. Loosely speaking, two words are equivalent if one can be
obtained from the other by swapping consecutive independent transitions.

Definition 4.18. Two transition words w,w′ ∈ T∗ are 1-equivalent, denoted
by w ≡1 w′, if w = w′ or if there are two independent transitions t and u
and two words w1,w2 ∈ T∗ such that w = w1 t uw2 and w′ = w1 u tw2.
Two words w,w′ ∈ T∗ are equivalent if w ≡ w′, where ≡ denotes the tran-
sitive closure of ≡1.

Since ≡1 is reflexive and symmetric, ≡ is an equivalence relation. It follows
easily from this definition and property (1) above that if h is a history of A,
then every word w ≡ h is also a history of A.

Definition 4.19. A Mazurkiewicz trace (or just a trace) of a product A is
an equivalence class of the relation ≡. The trace of a word w is denoted by
[w], and the set of all traces of A by [T∗].

A trace of A is a history trace if all its elements are histories.
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〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉
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s4 r3

〈ε, u3〉

Example 4.20. The sequence w = 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 is a history
of the product of Fig. 2.2 on p. 7. Its corresponding history trace is:

[w] = { 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 ,
〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 ,
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 ,
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 }.

w′ = 〈t1, ε〉 〈ε, u3〉 〈t1, ε〉 is not a history. Its corresponding

[w′] = { 〈t1, ε〉 〈ε, u3〉 〈t1, ε〉 ,
〈ε, u3〉 〈t1, ε〉 〈t1, ε〉 ,
〈t1, ε〉 〈t1, ε〉 〈ε, u3〉 }.



Model Checking -  Kapitel 6 - Teil 2
20

Theorem 4.21. For every i ∈ {1, . . . , n}, let Ti ⊆ T be the set of global
transitions of A in which Ai participates. Two words w,w′ ∈ T∗ satisfy
w ≡ w′ if and only if for every i ∈ {1, . . . , n} their projections onto Ti

coincide.

Example 4.22. Consider the trace [w] of Ex. 4.20. In this case we have

T1 = {〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉}, and
T2 = {〈t3, u2〉 , 〈t4, u2〉 , 〈ε, u1〉 , 〈ε, u3〉}.

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

[w] = { 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 ,
〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 ,
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 ,
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 }.

. The projections are

〈t1, ε〉 〈t3, u2〉 〈t5, ε〉

〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 .
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At this point the reader might like to ask the following question: Does
Thm. 4.21 still hold if we replace the projections of w and w′ onto T1, . . . ,Tn

by their projections onto T1, . . . , Tn, the sets of local transitions of A1, . . . ,An?
This would look more natural, since then the projections of a global history
would be local histories of its components. However, the theorem then fails,
as shown by the following example.
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Example 4.23. Consider the product shown in Fig. 4.5(a), and the global
histories w1 = 〈t1, u1, ε〉 〈ε, u2, v1〉 and w2 = 〈ε, u1, v1〉 〈t1, u2, ε〉. We have
[w1] = {w1} #= {w2} = [w2]. However, the projections of w1 and w2 onto
the sets T1, T2, and T3 of local transitions coincide; they are in both cases t1,
u1u2, and v1. So a trace is not characterized by the projections of its elements
onto the sets of local transitions.

q2

s1 r1 q1
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r2 r2
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4.3.2 Search Strategies as Orders on Mazurkiewicz Traces

We define search strategies following the same steps of the transition sys-
tem case (see Sect. 4.1). First, we formally define the set of histories of an
event (Def. 4.26). Then we show that this set is always a Mazurkiewicz trace
(Prop. 4.28). So an order on Mazurkiewicz traces induces an order on events,
and so it makes sense to define strategies as orders on Mazurkiewicz traces
(Def. 4.32).

We start by introducing the notion of the past of an event. Intuitively, this
is the set of events that must occur for the event to occur.

Definition 4.24. The past of an event e, denoted by past(e), is the set of
events e′ such that e′ ≤ e (recall that e′ < e if there is a path leading from e′

to e).2

It is easy to see that past(e) is always a configuration.



Model Checking -  Kapitel 6 - Teil 2
24

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉
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Example 4.25. The past of event 10 in Fig. 3.3 on p. 17 is past(10) =
{1, 3, 4, 6, 10}. While the past of an event is a configuration, not every config-
uration is the past of an event. For instance the configuration {2, 3} is not the
past of an event. However, it is easy to see that every configuration is the union
of the pasts of some events. For instance, for {2, 3} we have past(2) = {2} and
past(3) = {3}.
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Now we define the set of histories of an event as the set of realizations of
its past.

Definition 4.26. A transition word t1 t2 . . . tn is a history of a configuration
C if there is a realization e1 e2 . . . en of C such that ei is labeled by ti for every
i ∈ {1, . . . , n}. The set of histories of C is denoted by H(C). If C = past(e)
for some event e, then we also call the elements of H(past(e)) histories of e.
To simplify notation, we write H(e) instead of H(past(e)).
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Example 4.27. The configuration past(10) = {1, 3, 4, 6, 10} has two realiza-
tions, namely the occurrence sequences 1 3 4 6 10 and 3 1 4 6 10. So event 10 in
Fig. 3.3 on p. 17 has two histories, which are the second and third histories
in the list of four shown in Ex. 4.14 on p. 48.

Event sequence History
1 3 4 7 6 1210
1 3 4 6 10
3 1 4 6 10
1 3 4 6 107

Proposition 4.28. (a) Let C1, C2 be two configurations. Then C1 = C2 if and
only if H(C1) = H(C2).

(b) Let C be a configuration. Then H(C) is a Mazurkiewicz trace.
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Proposition 4.28 shows that we can define strategies for products as orders
on the Mazurkiewicz traces of A. Recall however that in the transition system
case a strategy was defined as an order that refines the prefix order, the
idea being that a history must be generated before any of its extensions are
generated. We need the same condition in the general case.

Definition 4.30. The concatenation of two traces [w] and [w′] is denoted by
[w] [w′] and defined as the trace [ww′]. We say that [w] is a prefix of [w′] if
there is a trace [w′′] such that [w′] = [w] [w′′].

We list some useful properties of trace concatenation and prefixes.
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Proposition 4.31.

(a) The prefix relation on traces is an order.
(b) [w1] [w2] ⊇ {v1 v2 | v1 ∈ [w1],v2 ∈ [w2]}.
(c) If [w1] = [w2] then [w] [w1] [w′] = [w] [w2] [w′] for all words w and w′.
(d) If [w] [w1] [w′] = [w] [w2] [w′] for some words w and w′, then [w1] =

[w2].

We can now formulate the generalization of search strategies.

Definition 4.32. A search strategy for A is an order on [T∗] that refines the
prefix order on traces.
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Definition 4.35. Let ≺ be a search strategy on [T∗]. An event e of the un-
folding of A is feasible if no event e′ < e is a terminal. A feasible event e is
a terminal if either

(a) e is labeled with a transition of G, or
(b) there is a feasible event e′ ≺ e, called the companion of e, such that

St(e′) = St(e).

A terminal is successful if it is of type (a). The ≺-final prefix is the prefix of
the unfolding of A containing the feasible events.

research scheme for products

Definition 4.6. Let ≺ be a search strategy. An event e is feasible if no event
e′ < e is a terminal. A feasible event e is a terminal if either

(a) it is labeled with a transition of G, or
(b) there is a feasible event e′ ≺ e, called the companion of e, such that

St(e′) = St(e).

A terminal is successful if it is of type (a). The ≺-final prefix is the prefix of
the unfolding of A containing the feasible events.

research scheme for transition systems

St(e) as a shorthand for) = St(past(e))., is the global state reached by the exe-
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It is easy to show that the scheme is well-defined and sound for every
strategy (compare with Lemma 4.8, Prop. 4.9 and Prop. 4.10).

Lemma 4.36. Let ≺ be an arbitrary search strategy, and let (F, T ) be a pair
of sets of events satisfying the conditions of Def. 4.35 for the sets of feasible
and terminal events, respectively. For every event e ∈ F , every history of H(e)
has length at most nK +1, where n is the number of components of A and K
is the number of reachable global states of A.

Proof. Assume that some history of H(e) has length greater than nK + 1.
Then, by the pigeonhole principle there is a component Ai of A and two i-
events e1 < e2 < e such that Sti(e1) = Sti(e2). Since e1 < e2 and the search
strategy ≺ refines the prefix order, we have e1 ≺ e2. By condition (b) we have
e2 ∈ T . Since e2 < e, e cannot be feasible, i.e., e /∈ F , and we are done. !
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A direct corollary of the proof above is that for all non-terminal feasible events
e the maximal length of the histories in H(e) is at most nK.

Proposition 4.37. The search scheme of Def. 4.35 is well-defined for every
search strategy ≺, i.e., there is a unique set of feasible events and a unique set
of terminal events satisfying the conditions of the definition. Moreover, the
≺-final prefix is finite.

Proof. Analogous to the proof of Prop. 4.9. !

Proposition 4.38. The search scheme of Def. 4.35 is sound for every strat-
egy.
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In the worst case, the size of the final prefix can be exponential in the
number K of reachable global states of A. This is not surprising, since this
is already the case for transition systems, which are products with only one
component. As in the case of transition systems, we can do better by using
total strategies.

Theorem 4.39. If ≺ is a total search strategy on [T∗], then the ≺-final prefix
generated by the search scheme of Def. 4.35 with ≺ as search strategy has at
most K non-terminal events.

Proof. Analogous to the proof of Thm. 4.13. !
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Unfortunately, a direct generalization of Thm. 4.11 does not hold: the search
scheme of Def. 4.35 is not complete for every strategy, as shown by the next
example.

t4

t6

t5

i2

h2

t2 t3

u4

u6

u5

i3

g3

u2 u3

v4

v6

v5

i4

h4

v2 v3

t1 u1 v1

G = {i}

T = {a = 〈a1, a2, a3, a4〉 ,b = 〈b1, b2, b3, b4〉 , c = 〈c1, c2, ε, ε〉 ,

s4

s5

i1

g1

s3s2

s6

s1

a1 b1

c1 e1 c2

a2 b2

e2

a3

d3

a4b3

d4f3

b4

f4

g = 〈g1, ε, g3, ε〉 ,h = 〈ε, h2, ε, h4〉 , i = 〈i1, i2, i3, i4〉}
d = 〈ε, ε, d3, d4〉 , e = 〈e1, e2, ε, ε〉 , f = 〈ε, ε, f3, f4〉 ,

Fig. 4.6. An instance of the executability problem

s3 t3 u3 v3s2 t2 u2 v2

s4 t4

s1

s5 t5

u4 v4

u5 v5

s6 t6 u6 v6

a b

d f

g h

i

c e

t1 u1 v1

Fig. 4.7. Petri net representation of the product of Fig. 4.6
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s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4

s6 u6 v6 s6 t6 u6

s5 t5 v5

a b

c e f

g h

i i

d

1 2

3 4 5 6

h7 8 g 9

12

10

u5

11

t6 v6

v1u1t1

Fig. 4.8. Unfolding of the product of Fig. 4.6

em
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Contradiction. Since H(e′s)c
′
s = H(e′m) = H(e′)cs, we have e′ < e′m and

e′s < e′m. So there are three possible cases:

• e′s < e′. Then, since e′s is a spoiler and spoilers are terminals, e′ is not
feasible, contradicting our assumption that e′ is the companion of es, which
according to Def. 4.6 requires e′ to be feasible.

• e′s = e′. Then, since H(e′s)c
′
s = H(e′m) = H(e′)cs, we have cs = c′s.

Moreover, since e′s = e′ and e′ ≺ es we have e′s ≺ es. This implies e′m " em,
contradicting the minimality of em.

• e′ < e′s. Then, since H(e′s)c
′
s = H(e′m) = H(e′)cs, the computation c′s is

shorter than cs, and so e′m " em, contradicting the minimality of em.

!

The next example shows that the size of the final prefix depends on the
choice of strategy. In the worst case, the final prefix can be exponentially
larger than the transition system.

e′m em

ese′

g

cs cs

g

≺

c′
s

e′
s
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The question is, which are the search strategies that in combination with
the search scheme lead to complete search procedures? The next definition
introduces such a class of strategies.

Definition 4.41. A strategy ≺ on [T∗] is adequate if

• it is well-founded, and
• it is preserved by extensions: For all traces [w], [w′], [w′′] ∈ [T∗], if [w] ≺

[w′], then [w] [w′′] ≺ [w′] [w′′].

The following surprising result is due to Chatain and Khomenko. The proof
requires some notions of the theory of well-quasi-orders, and can be found in
Sect. 5.4 of the next chapter.

Proposition 4.42. Every strategy on [T∗] preserved by extensions is well-
founded.

It follows that a strategy is adequate if and only if it is preserved by
extensions. However, since the term “adequate” has already found its place
in the literature, we keep it.

We prove that the search scheme of Def. 4.35 together with an adequate
search strategy always yields a complete search procedure.
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Theorem 4.43. The search scheme of Def. 4.35 is complete for all adequate
strategies.

Proof. Let ≺ be an adequate search strategy. Assume that some goal transi-
tion g ∈ G is executable, but no terminal of the final prefix is successful. We
derive a contradiction.

We follow the scheme of the completeness proof of Thm. 4.11, just changing
the definition of minimal witness, and using the definition of an adequate
strategy to derive the contradiction.

e′m em

ese′

cs cs

≺

≺ gg

Fig. 4.9. Illustration of the proof of Thm. 4.43
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Witnesses. Let an event of the unfolding of A be a witness if it is labeled
with g. Using the same argument as in the proof of Thm. 4.11, we conclude
that for every witness e there is an unsuccessful terminal es < e that we call
the spoiler of e.

Minimal witnesses. Since ≺ is well-founded by definition, the set of witnesses
has at least one minimal element em w.r.t. ≺. Let es be the spoiler of em

(see Fig. 4.9), and let [cs] be a trace satisfying H(em) = H(es) [cs]. Since es

is an unsuccessful terminal, it has a companion e′ ≺ es such that St(e′) =
St(es), and so H(e′) [cs] is also a history of A. Let e′m be the event satisfying
H(e′m) = H(e′)[cs]. Then e′m is labeled with g, and so it is a witness.

Contradiction. Since ≺ is preserved by extensions and H(e′) ≺ H(es) holds,
we have H(e′m) = H(e′)[cs] ≺ H(es)[cs] = H(em), and so H(e′m) ≺ H(em).
But this implies e′m ≺ em, which contradicts the minimality of em. !

e′m em

ese′

cs cs

≺

≺ gg
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Let us summarize the results of this section and Sect. 4.4. The search
scheme of Def. 4.35 is well-defined and sound for all search strategies. More-
over,

• the final prefix has at most K non-terminal events (where K is the number
of reachable global states) for total strategies, and

• the scheme is complete for adequate strategies.

The obvious question is whether total and adequate strategies exist. In
the rest of the section we show that this is indeed the case.

In order to avoid confusions, we use the following notational convention:

Notation 2. We denote strategies by adding a mnemonic subscript to the
symbol ≺, as in ≺x. Given a strategy ≺x, we write [w] =x [w′] to denote that
neither [w] ≺x [w′] nor [w′] ≺x [w] holds.
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A simple example of an adequate strategy is the size strategy.

Definition 4.44. The size strategy ≺s on [T∗] is defined as: [w] ≺s [w′] if
|w| < |w′|, i.e., if w is shorter than w′.

Notice that the size strategy is well-defined because all words that belong to
a trace have the same length. Observe also that, as required of a strategy, it
refines the prefix order. Finally, the size strategy is clearly adequate, because
[w] ≺s [w′] implies |w| < |w′| implies |ww′′| < |w′w′′| implies [w][w′′] ≺s

[w′][w′′] for every trace [w], [w′], [w′′].

Unfortunately, as we saw in Ex. 4.12 on p. 47, the size strategy may lead
to very large final prefixes, even for transition systems. In the worst case, the

prefix can be exponentially larger than the transition system itself, and so
potentially much too large for verification purposes.

The Parikh strategy is a refinement of the size strategy that compares not
only the total number of occurrences of transitions, but also the number of
occurrences of each individual transition. In order to define it, we introduce
the Parikh image of a trace.
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Definition 4.45. Let [w] be a trace. The Parikh mapping of [w], denoted by
P([w]), is the mapping that assigns to each global transition t the number of
times that t occurs in w.

Notice that the Parikh mapping is well-defined because all the words of a
trace have the same Parikh mapping. The Parikh strategy is defined in two
stages: first, the sizes of the traces are compared, and then, if necessary, their
Parikh mappings.

Definition 4.46. Let <a be a total order on T, called the alphabetical order.
The Parikh strategy ≺P on [T∗] is defined as follows: [w] ≺P [w′] if either
[w] ≺s [w′], or [w] =s [w′] and there is a global transition t such that

• P([w])(t) < P([w′])(t), and
• P([w])(t′) = P([w′])(t′) for every t′ <a t.

The Parikh strategy refines the prefix order because the size strategy does. It
is easily seen to be adequate: Since P([w] [w′]) = P([w]) + P([w′]), we have
that [w] ≺P [w′] implies [w] [w′′] ≺P [w′] [w′′] for every trace [w], [w′], [w′′].

The Parikh strategy leads to smaller final prefixes than the size strategy,
and it is in fact a useful strategy in practical applications. However, it is easy
to show that it is not a total strategy, not even for products with only one
component. So Thm. 4.39 cannot be applied to it.
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4.5.2 Distributed Strategies

In this section we show that the problem of finding a total adequate strategy
on the set [T∗] of traces can be reduced to the much simpler problem of finding
a total adequate strategy for the set T∗ of words.

Recall Thm. 4.21: Given a trace, the projections of its elements onto
T1, . . . ,Tn coincide, where Ti is the set of global transitions in which the ith
component participates. Moreover, these projections characterize the trace,
i.e., different traces have different projections. It follows that searching for
total adequate orders on Mazurkiewicz traces reduces to searching for total
adequate orders on their tuples of projections onto T1, . . . ,Tn. Since these
are just tuples of words, we can try the following approach: find a total ade-
quate order on T∗, and then use some generic procedure to “lift” it to a total
adequate order on tuples of words.

In the following we develop this approach. We start with a useful notational
convention:
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Notation 3. We write [w] = [w1, . . . ,wn] to denote that w1, . . . ,wn are the
projections of w onto T1, . . . ,Tn and that [w] is the unique trace with this
property.

Example 4.47. For instance, we have

[〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉] = [ 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 ,
〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 ] .

The following little proposition shows that the prefix order on words and
the prefix order on traces fit nicely with each other.

Proposition 4.48. If [w] = [w1, . . . ,wn] and [w′] = [w′
1, . . . ,w

′
n] then

[w] [w′] = [w1 w′
1, . . . ,wn w′

n].

Proof. By definition we have [w] [w′] = [ww′]. Since for every i ∈ {1, . . . , n}
the projection of ww′ onto Ti is wi w

′
i, we are done. !

We are now ready to define the “lifting” procedure and prove its correct-
ness.

Definition 4.49. Let ≺ be a total search strategy on T∗. The distributed
strategy ≺d is the total search strategy on [T∗] defined as follows. Given [w] =
[w1, . . . ,wn] and [w′] = [w′

1, . . . ,w
′
n], we have [w] ≺d [w′] if there is an index

i ∈ {1, . . . , n} such that wi ≺ w′
i, and wj = w′

j for every 1 ≤ j < i.



Model Checking -  Kapitel 6 - Teil 2
44

By Prop. 4.48, and since ≺ refines the prefix order on words, ≺d refines the
prefix order on traces. Moreover, if ≺ is adequate and total then so is ≺d:

Theorem 4.50. If ≺ is a total adequate strategy on T∗, then ≺d is a total
adequate strategy on [T∗].

Proof. By the definition of an adequate strategy and Prop. 4.42, it suffices to
prove that ≺d is preserved by extensions. Let [w] = [w1, . . . ,wn] and [w′] =
[w′

1, . . . ,w
′
n] be traces such that [w] ≺d [w′], and let [w′′] = [w′′

1 , . . . ,w′′
n]

be an arbitrary trace. By definition, there is an index i such that wi ≺ w′
i

and wj = w′
j for every j < i . Then we have wj w′′

j = w′
j w′′

j for every j < i
and, since ≺ is preserved by extensions, wi w

′′
i ≺ w′

i w
′′
i . So ww′′ ≺ w′ w′′. !



Model Checking -  Kapitel 6 - Teil 2
45

So to finish our quest for a total adequate strategy on [T∗] we just have
to find a total adequate strategy on T∗. But this is easy:

Definition 4.51. Let <a be the alphabetical order on T. The lexicographic
strategy on T∗, denoted by ≺l, is defined as follows: w ≺l w′ if either w is a
proper prefix of w′ or there are words w,v,v′ and transitions a and b such
that a <a b, w = wav, and w′ = wbv′. The size-lexicographic strategy
on T∗, denoted by ≺sl, is defined as follows: w ≺sl w′ if either w ≺s w′ or
w =s w′ and w ≺l w′.

w = wav

w′ = wbv′. But then we have
<

a

≺
l
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Theorem 4.52. ≺sl is a total adequate strategy on T∗, and so ≺d
sl is a total

adequate strategy on [T∗].

Proof. By Thm. 4.50 it suffices to prove the first part. Clearly, ≺sl is a well-
founded total order on T∗. We show that it is preserved by extensions. Let
w,w′,w′′ be words such that w ≺sl w′. There are two possible cases:

• w ≺s w′. Then ww′′ ≺s ww′′ and so w w′′ ≺sl ww′′.
• w =s w′ and w ≺l w′. Then there are words w,v,v′ and transitions a

and b such that a <a b, w = wav and w′ = wbv′. But then we have
ww′′ = wavw′′ ≺l w bv′ w′′ = w′ w′′, and so ww′′ ≺sl w′ w′′.
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Since ≺d
sl is a total adequate order on [T∗], it is also complete, and so the

search procedure based on it will return the correct answer when applied to
the product of Fig. 4.6 on p. 59.

33

s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4
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s5 t5 v5
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c e f

g h

i i

d

1 2

3 4 5 6

h7 8 g 9
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11

t6 v6

v1u1t1

Fig. 4.8. Unfolding of the product of Fig. 4.6

Event T1 T2 T3 T4

1 a a a a

2 b b b b

3 ac ac a a

4 a a ad ad

5 be be b b

6 b b bf bf

7 acg ac adg ad

8 beg be bfg bf

9 be beh bf bfh

10 ac ach ad adh

11 acgi achi adgi adhi

12 begi behi bfgi bfhi

G = {i}

T = {a = 〈a1, a2, a3, a4〉 ,b = 〈b1, b2, b3, b4〉 , c = 〈c1, c2, ε, ε〉 ,

g = 〈g1, ε, g3, ε〉 ,h = 〈ε, h2, ε, h4〉 , i = 〈i1, i2, i3, i4〉}
d = 〈ε, ε, d3, d4〉 , e = 〈e1, e2, ε, ε〉 , f = 〈ε, ε, f3, f4〉 ,
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Event T1 T2 T3 T4

1 a a a a

2 b b b b

3 ac ac a a

4 a a ad ad

5 be be b b

6 b b bf bf

7 acg ac adg ad

8 beg be bfg bf

9 be beh bf bfh

10 ac ach ad adh

11 acgi achi adgi adhi

12 begi behi bfgi bfhi

Event T1 T2 T3 T4

1 a a a a

4 a a ad ad

2 b b b b

6 b b bf bf

3 ac ac a a

10 ac ach ad adh

5 be be b b

9 be beh bf bfh

7 acg ac adg ad

8 beg be bfg bf

11 acgi achi adgi adhi

12 begi behi bfgi bfhi
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Fig. 4.8. Unfolding of the product of Fig. 4.6

Event T1 T2 T3 T4

1 a a a a

4 a a ad ad

2 b b b b

6 b b bf bf

3 ac ac a a

10 ac ach ad adh

5 be be b b

9 be beh bf bfh

7 acg ac adg ad

8 beg be bfg bf

11 acgi achi adgi adhi

12 begi behi bfgi bfhi
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5

More on the Executability Problem

In this chapter we present some additional results on the executability prob-
lem, and in particular on adequate strategies, that are not used in the rest
of the book. The reader interested in the essentials of the model checking
procedure for LTL can safely skip them and move to Chap. 6.

In Sect. 5.1 we introduce complete prefixes. These are prefixes of the un-
folding which, loosely speaking, contain all reachable states. Once a complete
prefix is computed, it can be used to solve many different verification prob-
lems.

The other sections of the chapter present further results on adequate
strategies. Section 5.2 introduces a second total adequate strategy, different
from the distributed version of the size-lexicographic strategy that was defined
in the previous chapter. Section 5.3 generalizes the concept of breadth-first
and depth-first search to products. Finally, Sect. 5.4 proves Prop. 4.42, stat-
ing that every strategy on Mazurkiewicz traces preserved by extensions is
well-founded.
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6

Search Procedures for the Repeated

Executability Problem

• The repeated executability problem: Given a set R ⊆ T of global
transitions, can some transition of R be executed infinitely often, i.e., is
there an infinite global history containing infinitely many events labeled
by transitions of R?
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, which executes an infinite number of transitions of

The final prefix for a breadth-first strategy ≺

We can now show that the search scheme obtained by dropping th
tion #R(e′) ≥ #R(e) in the terminals of type (b) is no longer complete. The
new final prefix is shown in Fig. 6.1(
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Definition 6.1. Let ≺ be a search strategy on T ∗. An event e is feasible if
no event e′ < e is a terminal. A feasible event e is a terminal if there exists
a feasible event e′ ≺ e, called the companion of e, such that St(e′) = St(e)
and at least one of (a) e′ < e or (b) #R(e′) ≥ #R(e) holds, where #R(e)
denotes the number of occurrences of transitions of R in the history H(e).

A terminal is successful if it satisfies (a) and #R(e′) < #R(e) holds. The
≺-final prefix is the prefix of the unfolding of A containing the feasible events.

Theorem 6.4. The search scheme of Def. 6.1 is complete for every strategy.

Proposition 6.3. The search scheme of Def. 6.1 is well-defined for every
strategy ≺. Moreover, the ≺-final prefix is finite.



Model Checking -  Kapitel 6 - Teil 2
54

As for the executability problem, one way to reduce the size of the final
prefix is to require the strategy ≺ to be a total order. However, in this case
the number of non-terminals of the final prefix may grow quadratically in the
number of states of A.

Theorem 6.5. If ≺ is a total order on T ∗, then the ≺-final prefix of Def. 6.1
has at most |S|2 non-terminal events.
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6.2 Search Scheme for Products

We fix a product A = 〈A1, . . . ,An,T〉, where Ai = 〈Si, Ti, αi, βi, is i〉, and
a set of global transitions R ⊆ T. The problem to solve is whether some
infinite global history of A executes transitions of R infinitely often. We call
the elements of R (global) R-transitions, and call the events labeled by them
R-events.

We generalize the search scheme of Def. 6.1 to products. Following the ideas
introduced in Sect. 4.4, we replace St(e) by St(e), and H(e) by H(e). The
remaining question is how to generalize #R(e). Recall that in the transition
system case we defined #R(e) as the number of occurrences of transitions of
R in H(e).

Definition 6.6. Let e be an event, and let h be any history of the trace H(e).
We denote by #R([h]) the number of occurrences of R-transitions in h, and
define #R(e) = #R([h]).

Notice that #R(e) is well-defined because every transition occurs the same
number of times in all histories of H(e).
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We are now ready to define the search scheme for products.

Definition 6.8. Let ≺ be a search strategy on [T∗]. An event e is feasible if
no event e′ < e is a terminal. A feasible event e is a terminal if there exists a
feasible event e′ ≺ e, called the companion of e, such that St(e′) = St(e) and
at least one of (a) e′ < e or (b) #R(e′) ≥ #R(e) holds.

A terminal is successful if it satisfies (a) and #R(e′) < #R(e) . The ≺-
final prefix is the prefix of the unfolding of A containing the feasible events.

Theorem 6.11. The search scheme of Def. 6.8 is complete for every adequate
strategy.
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〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

11 12

10

4

s1 r1

t1 t2 u1

r2s3s2

〈t3, u2〉 〈t4, u2〉

s4r3s4

t5 u3

r1

u1

r2s3

t2t1

s2

s1

〈t3, u2〉 〈t4, u2〉

s4r3s4 r3

r3

132

7

8 5

9 6

Fig. 6.2. Repeated executability final prefix of the product of Fig. 2.2 on p. 7 for
R = {〈t1, ε〉}

and the distributed size-lexicographic strategy, i.e., ≺=≺d
sl.

cording to the order in which they are added. Event 7 is a termi
7, and 1 = #R(4) ≥ #R(7) = 0. To see that

H(4) = [ 〈t1, ε〉 〈t3, u2〉 , 〈ε, u1〉 〈t3, u2〉 ], and
H(7) = [ 〈t2, ε〉 〈t4, u2〉 , 〈ε, u1〉 〈t4, u2〉 ].

panion. Event 11 is successful, because it is a causal successor of event 4, and
(11). Event 12 is an unsuccessful terminal.

#R(4) = 1 < 2 = #R(11). Event 12 is an unsuccessful terminal.

Events 11 and 12 are terminals of type (a), both having event 4
panion. Event 11 is successful, because it is a causal succes
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Search Procedures for the Livelock Problem

We fix a transition system A = 〈S, T, α, β, is〉, and partition the set T into a
set V of visible and a set I = T \ V of invisible transitions. We also fix a set
L ⊆ V of livelock monitors.

A livelock is an infinite history of the form h t c, where h ∈ T ∗ is a finite
history, t ∈ L is a livelock monitor, and c ∈ Iω is an infinite computation
containing only invisible transitions. We call the occurrence of t after the
history h the livelock’s root. Intuitively, livelocks are undesirable behaviors
in which right after the livelock’s root the system enters an infinite loop of
unobservable actions. We wish to solve the problem of whether A has some
livelock.

s1

s2

a

cb

d f i

s4

s6

h

s3

s5 g

e

V = {b, c, h}
L = {b, c}
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8

Model Checking LTL

The set of formulas of Linear Temporal Logic (LTL) over a given nonempty
set AP of atomic propositions is inductively defined as follows:

• every atomic proposition is an LTL formula,
• if ψ1 is an LTL formula, then ¬ψ1 and Xψ1 are LTL formulas; and
• if ψ1, ψ2 are LTL formulas, then ψ1 ∨ ψ2 and ψ1 Uψ2 are LTL formulas.

We employ the usual shorthands for LTL formulas: true = ¬p ∨ p for an
arbitrary p ∈ AP , false = ¬true, ψ1 ∧ ψ2 = ¬(¬ψ1 ∨ ¬ψ2), ψ1 ⇒ ψ2 = ¬ψ1 ∨
ψ2, ψ1 Rψ2 = ¬(¬ψ1 U¬ψ2), Fψ1 = true Uψ1, and Gψ1 = false Rψ1.

({p} ∅)ω |= G (p ⇒ X¬p) ∅ ∅ {p} {p} (∅)ω #|= G (p ⇒ X¬p)
({p} ∅)ω #|= F (p ∧X p) ∅ ∅ {p} {p} (∅)ω |= F (p ∧X p)
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Example 8.2. Consider the product of Fig. 8.1. We consider LTL over the set
of atomic propositions AP = {t1, t2, u1, u2}. The sequence h = abc (ab)ω

is an infinite history. The sequence of global states visited along its ex-
ecution is 〈t1, u1〉 〈t1, u2〉 〈t1, u1〉 (〈t2, u1〉 〈t2, u2〉)ω , and we have π(h) =
{t1, u1} {t1, u2} {t1, u1} ({t2, u1} {t2, u2})ω.

c

t1

t2

a b

u1

u2

T = {a = 〈ε, a〉 ,b = 〈ε, b〉 , c = 〈c, ε〉}

Fig. 8.1. A running example for LTL model checking

π(h) !|= G (u1 ⇒ X¬u1) and π(h) |= F (u1 ∧ Xu1) .

So, by definition, we have

h !|= G (u1 ⇒ X¬u1) and h |= F (u1 ∧ Xu1) .
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So far we know how to interpret a formula ψ on the infinite histories of the
product A, but it is convenient to extend the interpretation to what we call
the ψ-histories of A. The reason is that in order to solve the model check-
ing problem we will later construct an automaton accepting exactly these
histories.

Let APψ be the set of atomic propositions that appear in ψ. A ψ-state is a
tuple r = 〈r1, . . . , rn〉 such that for every i ∈ {1, . . . , n} either ri ∈ Si∩APψ or
si = ⊥, where ⊥ is an special symbol. Given a global state s = 〈s1, . . . , sn〉, we
assign to it a ψ-state sψ = 〈s1ψ, . . . , snψ〉 as follows. For every i ∈ {1, . . . , n},

siψ =

{
si if si ∈ APψ, and
⊥ otherwise.

So, intuitively, sψ is the information on the global state s available to an
observer that can only see the local states of APψ.
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A tuple 〈r, t, r′〉, where r, r′ are ψ-states and t is a global transition, is a
ψ-step if there exists a step 〈s, t, s′〉 such that r = sψ and r′ = s′ψ. We de-
fine ψ-computations and ψ-histories by taking the definitions of computation
and history, respectively, and replacing steps by ψ-steps. A sequence t1 . . . tk

of global transitions is a ψ-computation if there is a sequence r0, . . . , rk of
ψ-states such that 〈ri−1, ti, ri〉 is a ψ-step for every i ∈ {1, . . . , k}. A ψ-
computation is a ψ-history if one can choose the sequence r0, . . . , rk such
that r0 = isψ. Infinite ψ-computations and infinite ψ-histories are defined
analogously. To gain some intuition, imagine that an observer can only see
the local states of APψ and the transitions having them as source or target
states. A sequence of transitions is a ψ-history if this observer cannot conclude
that it is not a history by just observing the marking changes in all the places
in APψ.
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c

t1

t2

a b

u1

u2

T = {a = 〈ε, a〉 ,b = 〈ε, b〉 , c = 〈c, ε〉}

Fig. 8.1. A running example for LTL model checking

Example 8.4. Consider again the product of Fig. 8.1, and assume that we have
APψ = {u1} (the exact formula ψ is irrelevant for this example). The triple
〈 〈t1, u1〉 , c, 〈t2, u1〉 〉 is a step, and 〈 〈⊥, u1〉 , c, 〈⊥, u1〉 〉 is its corresponding
ψ-step. It follows that c c is a ψ-history because of the two ψ-steps

〈 〈⊥, u1〉 , c, 〈⊥, u1〉 〉 〈 〈⊥, u1〉 , c, 〈⊥, u1〉 〉 .

Observe however that c c is not a history.
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c

t1

t2

a b

u1

u2

T = {a = 〈ε, a〉 ,b = 〈ε, b〉 , c = 〈c, ε〉}

Fig. 8.1. A running example for LTL model checking

On the other hand, the sequence aa is not a ψ-history. To see why, assume
there are ψ-steps 〈r0,a, r1〉 and 〈r1,a, r2〉 such that r0 is the initial ψ-state,
i.e., r0 = 〈⊥, u1〉. By the definition of ψ-step we have r1 = 〈⊥,⊥〉. But, since
a can only occur at global states such that the second component is in state
u1, there is no r2 such that 〈r1,a, r2〉 is a ψ-step.

As in the case of histories, it is easy to see that given an infinite ψ-history
σ = t1 t2 t3 . . . of A, there is a unique sequence r0 r1 r2 . . . of ψ-states such
that r0 = isψ and 〈ri−1, ti, ri〉 is a ψ-step of A for every i ≥ 1. We denote this
sequence by πψ(σ), and call it the ψ-sequence of σ. We say that σ satisfies ψ,
denoted by σ |= ψ, if πψ(σ) |= ψ.



ψ
ψ

65

8.3 Testers for LTL Properties

Deciding whether all infinite histories of a product A satisfy ψ is equivalent
to deciding whether some infinite history violates ψ, which in turn is equiv-
alent to deciding if some infinite history satisfies ¬ψ. The tester approach to
the model checking problem reduces this last question to the simpler one of
checking if some history of a new product, which depends on ψ, satisfies a
fixed property.

A

¬ψ

• Construct a tester recognizing the set L2 of all ψ-histories satisfying ¬ψ.
• Using this tester, construct a new product recognizing the intersection

L1 ∩ L2, i.e., the set of ψ-histories of A violating ψ.
• Check whether L1 ∩ L2 is empty or not.

L2

L1

-histories corresponding to the infinite histories

We will see that the check can be reduced to the repeated executability
problem. Then, in Sect. 8.5 we additionally resort to also solving the livelock
problem for efficiency reasons. We know how both of these problems can be
solved from the previous chapters.
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The testers suitable for checking LTL properties are called Büchi testers.
A Büchi tester of A, or simply a tester, is a triple BT = (B, F, λ), where
B = (S, T, α, β, is) is a transition system, F ⊆ S is a set of accepting states,
and λ: T → T is a labeling function that assigns to each transition of B a global

transition of A. A tester BT recognizes an infinite sequence t1 t2 t3 . . . ∈ Tω

if there is an infinite history h = u1 u2 u3 . . . of B and an accepting state s ∈ F
such that ti = λ(ui) for every i ≥ 1 and h visits the state s infinitely often,
i.e., the sequence π(h) contains infinitely many occurrences of s. The language
of BT is the set of words of Tω recognized by BT .

ψ
ψ A

¬ψ
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Example 8.5. Figure 8.2 shows a tester of the product of Fig. 8.1 for the prop-
erty F t2. The names of the tester transitions have been omitted; we show only
the global transitions of the product they are labeled with. The states drawn
using two circles are the accepting states, and states drawn with a single circle
are the non-accepting states. The tester recognizes the sequence c(ab)ω , but
not (ab)ω .

c

a,b

a,b

Fig. 8.2. A tester of the product of Fig. 8.1 for F t2

67

c

t1

t2

a b

u1

u2

T = {a = 〈ε, a〉 ,b = 〈ε, b〉 , c = 〈c, ε〉}
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Let ψ be a formula of LTL. A tester BT tests the property ψ or is a tester
for ψ if it recognizes the infinite ψ-histories of A that satisfy ψ.

In the rest of this chapter we show that every LTL formula over AP has
a Büchi tester. This is a very well-known topic in the area of model checking,
and there exist many different constructions. We sketch a very simple one,
without giving a formal proof of correctness. Readers familiar with LTL to
Büchi automata translations may wish to jump directly to Sect. 8.4.
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8.4 Model Checking with Testers: A First Attempt

We define a synchronization of a tester and product in which the tester ob-
serves all global transitions of the product. We show that this synchronization
reduces the model checking problem to the repeated executability problem.

It is convenient to introduce some notation. Given a global transition
t = 〈t1, . . . , tn〉 of A and a transition u of a tester BT , we use 〈t, u〉 as
an abbreviation of the tuple 〈t1, . . . , tn, u〉. Similarly, given a global state
s = 〈s1, . . . , sn〉 of A and a state r of BT , we abbreviate 〈s1, . . . , sn, r〉 to
〈s, r〉.

Definition 8.16. Let BT = (B, F, λ) be a tester. The full synchronization of
A and BT is the product A‖BT = 〈A1, . . .An,B,U〉, where the synchroniza-
tion constraint U contains a global transition 〈t, u〉 for every global transition
t of A and every transition u of BT such that λ(u) = t.
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Given a sequence σ = 〈t1, u1〉 〈t2, u2〉 〈t3, u3〉 . . . of transitions of A‖BT ,
we call σA = t1 t2 t3 . . . the projection of σ on A, and σBT = u1 u2 u3 . . .
the projection of σ on BT . It follows immediately from the definition of full
synchronization that σ is a history of A ‖ BT if and only if σA and σBT

are histories of A and BT , respectively. We say that σ visits accepting states
infinitely often if there are infinitely many indices i ≥ 1 such that the target
state of the transition ui is an accepting state of BT .

Proposition 8.17. Let BT ¬ψ be a tester for ¬ψ. A history of A violates ψ
if and only if it is the projection on A of an infinite history of A‖BT ¬ψ that
visits accepting states infinitely often.
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Example 8.18. Consider the transition system A shown in Fig. 8.4. Suppose we
want to check whether A satisfies ψ1 = F (u1 ∧ Xu1), i.e., whether all global

histories of A eventually contain two consecutive time steps in which A is in
state u1. A Büchi tester BT ¬ψ1 = BT G (u1⇒X¬u1) is shown in Fig. 8.5. Note

the tester. The full synchronization of the transition system of Fig. 8.4 and the
tester of Fig. 8.5, namely A ‖BT ¬ψ1 , is in Fig. 8.6. The full synchronization
A‖BT ¬ψ1 has an infinite history (〈a, t1〉 〈b, t2〉)ω, and thus the infinite history
(ab)ω of A violates ψ.

a b

u1

u2

t2(b)t1(a)

Fig. 8.5. A tester of the transition system of Fig. 8.4 for G (u1 ⇒ X¬u1)Fig. 8.4. A transition system A

U = {a = 〈a, t1〉 ,b = 〈b, t2〉}
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Proposition 8.17 allows us to reduce the model checking problem to the
repeated executability problem. Recall that in the repeated executability prob-
lem we check if there exists an infinite history that executes global transitions
from a set R infinitely often. In contrast, in order to apply Prop. 8.17 we
have to check if the history visits accepting states infinitely often. To reduce
the latter to the former, it suffices to choose the set R so that it contains the
global transitions whose occurrence leads to an accepting state.

Theorem 8.19. Let A be a product and let ψ be a property of LTL. Let BT ¬ψ

be a tester for ¬ψ. Let R be the set of global transitions 〈t, u〉 of A ‖ BT ¬ψ

such that the target state of u is an accepting state of BT ¬ψ. A satisfies ψ
if and only if the answer to the instance of the repeated executability problem
given by A‖BT ¬ψ and R is negative.



Model Checking -  Kapitel 6 - Teil 2
73

While this approach is perfectly sensible when A only has one component,
it has a serious problem for general products when used with the unfolding
method. To understand why, we take a closer look at the definition of full
synchronization (Def. 8.16). Recall that 〈t, u〉 if and only if t ∈ T, u $= ε,
and t ∈ λ(u). In particular, it follows that BT ¬ψ participates in all global
transitions of A ‖BT ¬ψ. But, in this case, the final prefix of A ‖BT ¬ψ does
not contain any pair of concurrent events, and so the unfolding method does
not present any advantage over exploring all the global states of the product.
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The solution to the problem above is to replace the full synchronization by a
“less intrusive” synchronization, in which the tester does not participate in all
global transitions. This approach, which is the subject of this section, comes
at a price (not very high, as we shall see): it only works for the stuttering-
invariant fragment of LTL.

Definition 8.20. Two infinite words π, π′ ∈ (2AP )ω are stuttering equivalent
if there are two infinite sequences of positive integers 0 = i0 < i1 < i2 < . . .
and 0 = j0 < j1 < j2 < . . . such that for every k ≥ 0 :

π(ik) = π(ik+1) = . . . = π(i(k+1)−1) = π′
(jk) = π′

(jk+1) = . . . = π′
(j(k+1)−1) .

A formula ψ of LTL is stuttering-invariant if π |= ψ implies π′ |= ψ for every
two stuttering equivalent words π, π′.
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Example 8.21. Formulas like F p and pU q are stuttering-invariant. Loosely
speaking, they promise that something will eventually happen, but do not
specify when, which makes them insensitive to stuttering. On the contrary,
the formula X p is not stuttering-invariant, since we have ∅ ({p})ω |= X p, but
∅ ∅ ({p})ω "|= X p.

Let us now consider our particular context, in which the set of atomic
propositions AP is the set of local states of all components.

Definition 8.22. A global transition t is stuttering w.r.t. ψ (or just stutter-
ing, when ψ is clear from the context) if APψ ∩ •t = APψ ∩ t•, where APψ

is the set of atomic propositions that occur in ψ.
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Observe that if t is stuttering then S = (S \ •t)∪t• holds for every S ⊆ APψ.
Intuitively, the occurrence of a stuttering transition does not change the values
of the atomic propositions that appear in ψ. The non-stuttering projection of
a sequence σ of global transitions is the sequence obtained by removing all
occurrences of stuttering transitions from σ.

The following proposition follows easily from the definitions:

Proposition 8.23. Let ψ be a stuttering-invariant formula, and let σ, σ′ be
two infinite sequences of global transitions having the same non-stuttering
projection. Then σ |= ψ if and only if σ′ |= ψ.
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We are now ready to define a new notion of synchronization between
a tester for a stuttering-invariant property and a product.

Definition 8.24. Let BTψ = (Bψ, Fψ , λψ) be a tester for a stuttering-invariant
formula ψ. The stuttering synchronization of A and BTψ is the product
A‖s BTψ = 〈A1, . . .An,Bψ,U〉, where the synchronization constraint U con-
tains:

• a transition 〈t, u〉 for every non-stuttering transition t of A and every
transition u of BT ψ such that t = λ(u); and

• a transition 〈t, ε〉 for every stuttering transition t of A.

A transition 〈t, u〉 of A‖s BTψ is stuttering if t is stuttering or, equivalently,
if u = ε.

Intuitively, the tester in a stuttering synchronization only observes the
non-stuttering transitions executed by the product. All others occur “silently”,
without the knowledge of the tester. This motivates the following definition:
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Definition 8.25. An infinite history of A is recurrent if it contains infinitely
many occurrences of non-stuttering transitions. An infinite history of the stut-
tering synchronization A‖s BT¬ψ is recurrent if its projection on A is recur-
rent or, equivalently, if the tester participates in infinitely many transitions.

We will now show that Prop. 8.17 still holds for recurrent histories.

Proposition 8.26. Let ψ be a stuttering-invariant formula of LTL and let
BT¬ψ be a tester for ¬ψ. A recurrent infinite history of A violates ψ if and
only if it is the projection on A of an infinite history of A‖s BT¬ψ that visits
accepting states infinitely often.
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Consider now the case of non-recurrent histories. If an infinite history h′

of A ‖s BT¬ψ is non-recurrent, then it can be split into a minimal length
prefix h and a suffix c that starts at the smallest index i such that c =
〈ti, ε〉 〈ti+1, ε〉 〈ti+2, ε〉 . . . contains only stuttering transitions. Let 〈s, q〉 be the
global state reached by h′ after executing h, i.e., right before the execution
of 〈ti, ε〉. The key intuition is that we can detect whether h′ violates ψ by
looking at the tester’s state q reached after executing h. Prop. 8.28 proves
that it suffices to check whether, loosely speaking, BT with q as initial state
recognizes some infinite sequence of A containing only stuttering transitions.
The intuition is that all such sequences are “indistinguishable”; if the tester
recognizes any of them it will also recognize c.

〈s, q〉

h 〈ti, ε〉 〈ti+1, ε〉 〈ti+2, ε〉 . . .h′ =



Model Checking -  Kapitel 6 - Teil 2
80

Definition 8.27. A state q of BT is stutter-accepting if some computation
starting at q visits accepting states infinitely often and contains only transi-
tions of BT labeled by stuttering transitions of A.

Proposition 8.28. Let ψ be a stuttering-invariant formula of LTL and let
BT¬ψ be a tester for ¬ψ. A non-recurrent infinite history of A violates ψ if
and only if it is the projection on A of an infinite history h′ = hc (split into
h and c as described above) of A‖s BT¬ψ satisfying the following properties:

• the tester’s state reached by the occurrence of h is stutter-accepting; and
• c contains only stuttering transitions.
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declares the non-stuttering transitions visible, and the stuttering transitions

invisible. The livelock monitors are defined as the non-stut

declares the non-stuttering transitions visible, and the s

declares the non-stuttering transitions visible, and the s

monitors. A livelock is a history h t c

However, we still have to solve a small problem. If the initial state of
the tester happens to be stutter-accepting, then in the history hc the finite
history h may be empty. In this case no livelock monitor leaves the tester in
a stutter-accepting state, because the tester is in such a state from the very
beginning! This technical problem can be solved by instrumenting A‖s BT¬ψ:
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Definition 8.29. The instrumentation of A ‖s BT¬ψ, which we denote by
I(A‖s BT¬ψ), is obtained by

• adding to each component Ai of A a new initial state is′i and a new tran-
sition it i leading from is′i to the old initial state isi;

• adding to BT ψ a new initial state is′BT and a new transition itBT leading
from is ′BT to the old initial state isBT ; and

• adding to the synchronization constraint a new transition 〈it, itBT 〉, where
it = 〈it1, it2, . . . , itn〉.
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Hauptergebnis:

Theorem 8.30. Let A be a product and let ψ be a stuttering-invariant prop-
erty of LTL. Let BT ¬ψ be a tester for ¬ψ. Define:

• V as the set containing the non-stuttering transitions of I(A‖s BT¬ψ) and
the transition 〈it, itBT 〉; and

• R and L as the subsets of V containing those transitions 〈t, u〉 such that
the target state of u is, respectively, an accepting state and a stutter-
accepting state of BT ¬ψ.

A satisfies ψ if and only if the answers to

• the instance of the repeated executability problem given by I(A ‖s BT¬ψ)
and R; and

• the instance of the livelock problem given by I(A‖s BT¬ψ), V, and L

are both negative.
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Proposition 8.31. The set of stutter-accepting states of BT can be computed
in linear time in the size of product A‖s BT¬ψ.

Proof. Whether a given transition of A is stuttering or not can be easily
checked by inspecting its source and target states (Def. 8.22), and takes only
linear time in the size of A. Let BT ′ be the result of removing from BT all
transitions u whose label λ(u) is a non-stuttering transition of A. By the
definition of stutter-accepting, we have to compute the states q of BT ′ such
that some computation of BT ′ starting at q visits accepting states infinitely
often. A way to do this in linear time is to proceed in two steps:

(1) compute the strongly connected components of BT ′ that contain at least
one accepting state and at least one edge whose both source and destina-
tion states belong to the component; and

(2) return the states from which any of these components can be reached by
a path of BT ′.

The algorithm is clearly correct. Step (1) can be performed in linear time
using Tarjan’s algorithm (see, e.g., [114]), while step (2) can be performed by
means of a backward search starting at the states computed in (1). !
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Example 8.32. Consider the product of transition systems A in Fig. 8.7. We
want to check whether the LTL formula ψ = FG (¬u2) holds in A. Since
APψ = {u2}, a global transition t is stuttering if {u2} ∩ •t = {u2} ∩ t•

(Def. 8.22). So the stuttering transitions are a1,a2,a3, and b.

a3 c3

t1

t2

b3

r1

r2

b1 a1 a2

s1

s2

b2 a4 c4

u1

u2

T = {a1 = 〈a1, ε, ε, ε〉 , a2 = 〈ε, a2, ε, ε〉 , a3 = 〈ε, ε, a3, ε〉 ,

a4 = 〈ε, ε, ε, a4〉 ,b = 〈b1, b2, b3, ε, ε〉 , c = 〈ε, ε, c3, c4〉}

Fig. 8.7. A product of transition systems A under LTL model checking
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In order to check ψ we create a Büchi tester BT ¬ψ = BT GF (u2), depicted
in Fig. 8.8.3 In order to further simplify the figure we have used some conven-
tions. By d(τ) we mean that the tester has four transitions d(a1), d(a2), d(a3),
and d(b), labeled with a1,a2,a3, and b, respectively. Similarly for f(τ). The
transitions e(a4) and g(a4) are labeled by a4. Since the transitions f(τ) are
labeled by stuttering transitions of the product, v2 is also stutter-accepting
The tester accepts all infinite histories of A which visit infinitely many global
states at which u2 holds.

d(τ)

v1

f(τ)

v2

e(a4) g(c4)

Fig. 8.8. Büchi tester of A for GF (u2)
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The stuttering synchronization of A and BT ¬ψ is a product P, whose
Petri net representation is shown in Fig. 8.9 (some global transitions which
can never occur have been removed from P to reduce clutter). The figure also
shows the sets R, V, and L defined in Thm. 8.30. The set V contains the
transition i and the non-stuttering transitions of P, i.e., a4 and c. Since v2 is

the only accepting and stuttering-accepting state of the tester, the sets R and
L coincide, and both contain the transition a4. Graphically, we signal that
a4 belongs to R by drawing it with a double rectangle, and we signal that it
belongs to L by coloring it light grey.

t0r0 s0 v0u0

a1

r2 s2 t2 u2 v2

s1 u1

i = 〈it1 , it2 , it3 , it4 , itBT 〉

v1

a2 a3 a4 = 〈ε, ε, ε, a4, e〉

t1r1
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V = {i, a4, c}
R = L = {a4}

t0r0 s0 v0u0

a1

r2 s2 t2 u2 v2

s1 u1

b = 〈b1, b2, b3, ε, ε〉 c = 〈ε, ε, c3, c4, g〉

i = 〈it1 , it2 , it3 , it4 , itBT 〉

v1

a2 a3 a4 = 〈ε, ε, ε, a4, e〉

t1r1

Notice that the transitions d and f of the tester do not produce any tran-
sition in the stuttering synchronization. However, it is because of f that v2 is
stutter-accepting, and that is the reason why a4 is added to L.

d(τ)

v1

f(τ)

v2

e(a4) g(c4)
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V = {i, a4, c}
R = L = {a4}

t0r0 s0 v0u0

a1

r2 s2 t2 u2 v2

s1 u1

b = 〈b1, b2, b3, ε, ε〉 c = 〈ε, ε, c3, c4, g〉

i = 〈it1 , it2 , it3 , it4 , itBT 〉

v1

a2 a3 a4 = 〈ε, ε, ε, a4, e〉

t1r1

stutter-accepting, and that is the reason why 4

Figure 8.10 shows the final prefix for the repeated executability problem
using the distributed size-lexicographic search strategy. Event 4 is a successful
terminal having event 1 as companion. Terminal and companion correspond
to the infinite global history (a4a3c)ω , which constitutes a counterexample to
the property ψ.ψ = FG (¬u2) holds in



Model Checking -  Kapitel 6 - Teil 2

stutter-accepting, and that is the reason why 4

Figure 8.10 shows the final prefix for the repeated executability problem
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V = {i, a4, c}
R = L = {a4}

t0r0 s0 v0u0

a1

r2 s2 t2 u2 v2

s1 u1

b = 〈b1, b2, b3, ε, ε〉 c = 〈ε, ε, c3, c4, g〉

i = 〈it1 , it2 , it3 , it4 , itBT 〉

v1

a2 a3 a4 = 〈ε, ε, ε, a4, e〉

t1r1

contains a successful terminal, corresponding to the infini
a4(a3a2a1b)ω
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stutter-accepting, and that is the reason why 4

Figure 8.10 shows the final prefix for the repeated executability problem
using the distributed size-lexicographic search strategy. Event 4 is a successful
terminal having event 1 as companion. Terminal and companion correspond
to the infinite global history (a4a3c)ω , which constitutes a counterexample to
the property ψ.

148 8 Model Checking LTL

t0r0 s0 v0u0

a1 a2 a3

r2 s2 t2 u2 v2

r1 s1 v1

b, unsuccessful c, successful

t1

1

23

4

56

7

a4 ∈ R

t1 u1 v1s1r1

t1 u1

i
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Similarly, Fig. 8.11 shows the final prefix for the livelock problem us-
ing a variant of the distributed size-lexicographic strategy. Also this prefix
contains a successful terminal, corresponding to the infinite global history
a4(a3a2a1b)ω of A. This is a second counterexample to ψ.

t0

t2

i

t1

1

35a1

b, unsuccessful

s0

a2

s2

s1

7

t1

u2

4

2 a4

u1

u0r0

r2

r1

6

v2

v1

v0

a3

c, unsuccessful

r1 s1 u1 v1

t2

t1

(a4)d ∈ L

t1

8

9 a3

s2

s1

12

a210

s1

b, successful

r2

r1

a1

r1

11

t1

u2

1312

v2

u1 v1

c, unsuccessful

t1
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Consider now the family A1,A2, . . . of products defined as follows. The
product An consists of n − 2 transition systems like the one on the left
of Fig. 8.7 and the two transition systems on the right of the same fig-
ure. Its global transitions are: a1, . . . ,an, where the ith component of ai

is ai, and all other components are equal to ε; b = 〈b1, . . . , bn−2, ε, ε〉; and
c = {ε, . . . , ε, cn−1, cn}. The product of Fig. 8.7 is the element of the family

a3 c3

t1

t2

b3

r1

r2

b1 a1 a2

s1

s2

b2 a4 c4

u1

u2

T = {a1 = 〈a1, ε, ε, ε〉 , a2 = 〈ε, a2, ε, ε〉 , a3 = 〈ε, ε, a3, ε〉 ,

a4 = 〈ε, ε, ε, a4〉 ,b = 〈b1, b2, b3, ε, ε〉 , c = 〈ε, ε, c3, c4〉}

Fig. 8.7. A product of transition systems A under LTL model checking
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a3 c3

t1

t2

b3

r1

r2

b1 a1 a2

s1

s2

b2 a4 c4

u1

u2

T = {a1 = 〈a1, ε, ε, ε〉 , a2 = 〈ε, a2, ε, ε〉 , a3 = 〈ε, ε, a3, ε〉 ,

a4 = 〈ε, ε, ε, a4〉 ,b = 〈b1, b2, b3, ε, ε〉 , c = 〈ε, ε, c3, c4〉}

Fig. 8.7. A product of transition systems A under LTL model checking

c = {ε, . . . , ε, cn−1, cn}. The product of Fig. 8.7 is the element of the family
corresponding to n = 2. The transitions a1, . . . ,an of An are concurrent, and
so An has more than 2n reachable global states. A model checking approach
based on the (naive) exploration of the interleaving semantics can take expo-
nential time. On the other hand it is easy to see that, whatever the strategy,
the final prefixes for the repeated reachability and the livelock problems only
grow linearly in n.



Model Checking -  Kapitel 6 - Teil 2
95

9.2 Some Experiments

The material of this book attacks some questions of the theory of concur-
rency which we think have intrinsic interest. In particular, we have pre-
sented some fundamental results about which search strategies lead to correct
search procedures. However, at least equally important is whether the the-
ory leads to more efficient verification algorithms in terms of time, space,
or both. This question must be answered experimentally, and in fact many
of the papers mentioned in the last chapters contain experimental sec-
tions [39, 41, 42, 56, 57, 58, 60, 61, 70, 71, 74, 85, 84, 86, 87, 88, 109, 110, 121]
in which the performance of the unfolding technique is measured and com-
pared with the performance of other techniques. In particular, [110] compares
the performance of PUNF, an implementation of a model checking algorithm
similar to the one described in this book, and the Spin model checker.
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Fig. 2. M-net Υ : buffer of capacity 2 (a), Büchi automaton A¬ϕ constructed for the

property ϕ
df
= !"(p2 != 0) (b), the M-net corresponding to A¬ϕ (c), and the product

net Υ¬ϕ (d).

In the next step a synchronised M-net system Υ¬ϕ is constructed as the prod-
uct of Υ and A¬ϕ. A standard approach would synchronise the system and the
Büchi automaton on all transitions. A drawback of such a synchronisation is that
it completely sequentialises the system. Since a strength of the unfolding tech-
nique is to exploit concurrency, such a product net would not be very suitable for
unfolding based verification techniques. Therefore, we use the synchronisation
construction of [4, 5] generalised to high-level nets. In order to exploit concur-
rency, Υ and A¬ϕ are only synchronised on those transitions of Υ which ‘touch’
the places that appear in the atomic propositions of ϕ. In the following such
transitions are called visible. For our example this means that Υ and A¬ϕ only
synchronise on the visible transitions t1 and t2, because they touch the place p2

which is the only place referred to in ϕ.
The resulting product net Υ¬ϕ is shown in Figure 2(d). Unlabelled arcs denote

that only • can flow along them.

Construction of Υ¬ϕ:

1. Put Υ and A¬ϕ side by side.
2. Connect each Büchi transition with Υ in such a way that it ‘observes’ the

places whose names appear in the guard of the transition. Let (q, x, q′) be
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(a)

Net Formula Result UnfSmdls Spin Punf

Abp !(p → "q) True 0.19 0.01 0.08
Bds !(p → "q) True 199 0.71 8.47
Dpd(7) "!¬(p ∧ q ∧ r) True 507 2.14 7.25
Furnace(3) "!p True 1057 1.00 26.90
Gasnq(4) "!p True 240 0.14 8.46
Rw(12) !(p → "q) True 2770 0.44 47.67
Ftp "!p True >12000 3.99 836
Over(5) "!p True 66.01 0.44 0.12
Cyclic(12) !(p → "q) True 0.38 11.25 0.08
Ring(9) "!p True 2.13 1.64 0.13
Dp(12) "!¬(p ∧ q ∧ r) True 13.05 117 0.36
Ph(12) "!¬(p ∧ q ∧ r) True 0.04 0.61 0.02
Com(15,0) !(p → ¬"q) True — 3.11 0.02
Par(5,10) !(p → ¬"q) True — 3.60 0.02

Net Spin Punf

Cyclic(15) 168 0.08
Cyclic(16) 478 0.07
Cyclic(17) 1601 0.10
Ring(12) 75.38 0.30
Ring(13) 274 0.50
Ring(14) 1267 0.85
Dp(13) 559 0.53
Dp(14) 2123 0.75
Ph(15) 16.69 0.01
Ph(18) 1570 0.01
Com(20,0) 232 0.02
Com(21,0) 686 0.03
Com(22,0) 2279 0.02
Par(6,10) 161 0.02
Par(7,10) mem 0.04

(b)
M-nets with the help of the utility of the tool [9].

Table 1(a) confirms that our approach outperforms UnfSmodels on all ex-
amples, with an increase of speed up to 550 times (Over(5) example). But we
should mention that as noted in [5] UnfSmodels is more or less an academic
prototype, whereas Punf is a high-performance unfolding engine. Com(15,0)
and Par(5,10) could not been verified with UnfSmodels because either the
Büchi automaton corresponding to the LTL-X formula for the low-level net (in
the former case) or the low level net itself (in the latter case) could not be gener-
ated within reasonable time. Comparing Punf and Spin one can see that Spin
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(a)

Net Formula Result UnfSmdls Spin Punf

Abp !(p → "q) True 0.19 0.01 0.08
Bds !(p → "q) True 199 0.71 8.47
Dpd(7) "!¬(p ∧ q ∧ r) True 507 2.14 7.25
Furnace(3) "!p True 1057 1.00 26.90
Gasnq(4) "!p True 240 0.14 8.46
Rw(12) !(p → "q) True 2770 0.44 47.67
Ftp "!p True >12000 3.99 836
Over(5) "!p True 66.01 0.44 0.12
Cyclic(12) !(p → "q) True 0.38 11.25 0.08
Ring(9) "!p True 2.13 1.64 0.13
Dp(12) "!¬(p ∧ q ∧ r) True 13.05 117 0.36
Ph(12) "!¬(p ∧ q ∧ r) True 0.04 0.61 0.02
Com(15,0) !(p → ¬"q) True — 3.11 0.02
Par(5,10) !(p → ¬"q) True — 3.60 0.02

Net Spin Punf

Cyclic(15) 168 0.08
Cyclic(16) 478 0.07
Cyclic(17) 1601 0.10
Ring(12) 75.38 0.30
Ring(13) 274 0.50
Ring(14) 1267 0.85
Dp(13) 559 0.53
Dp(14) 2123 0.75
Ph(15) 16.69 0.01
Ph(18) 1570 0.01
Com(20,0) 232 0.02
Com(21,0) 686 0.03
Com(22,0) 2279 0.02
Par(6,10) 161 0.02
Par(7,10) mem 0.04

(b)

performs better on the examples over the line. In contrast, Punf outperforms
Spin on the examples under the line. We wanted to investigate this further and
therefore we scaled up these systems and checked them again.
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(a)

Net Formula Result UnfSmdls Spin Punf
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Dpd(7) "!¬(p ∧ q ∧ r) True 507 2.14 7.25
Furnace(3) "!p True 1057 1.00 26.90
Gasnq(4) "!p True 240 0.14 8.46
Rw(12) !(p → "q) True 2770 0.44 47.67
Ftp "!p True >12000 3.99 836
Over(5) "!p True 66.01 0.44 0.12
Cyclic(12) !(p → "q) True 0.38 11.25 0.08
Ring(9) "!p True 2.13 1.64 0.13
Dp(12) "!¬(p ∧ q ∧ r) True 13.05 117 0.36
Ph(12) "!¬(p ∧ q ∧ r) True 0.04 0.61 0.02
Com(15,0) !(p → ¬"q) True — 3.11 0.02
Par(5,10) !(p → ¬"q) True — 3.60 0.02

Net Spin Punf

Cyclic(15) 168 0.08
Cyclic(16) 478 0.07
Cyclic(17) 1601 0.10
Ring(12) 75.38 0.30
Ring(13) 274 0.50
Ring(14) 1267 0.85
Dp(13) 559 0.53
Dp(14) 2123 0.75
Ph(15) 16.69 0.01
Ph(18) 1570 0.01
Com(20,0) 232 0.02
Com(21,0) 686 0.03
Com(22,0) 2279 0.02
Par(6,10) 161 0.02
Par(7,10) mem 0.04

(b)

The results are shown in Table 1(b). They seem to confirm that Spin’s ver-
ification time grows exponentially with the size of the benchmark, whereas the
verification time of Punf remains less than a second in all cases. All these sys-
tems have a high degree of concurrency, and the results show that our partial
order technique handles these systems quite well. In contrast, Spin’s partial or-
der reductions are not very efficient on these examples. In our current theory this
seems to be related to a reduction condition for LTL-X model-checking which is
known as the reduction proviso (see, e.g., [2, 19] for further details).
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As it was already mentioned, our unfolding routine supports multiple threads
running in parallel. To demonstrate this we performed some experiments on a
two processor machine.

The results are shown in Table 2. Punf(n) means that Punf makes use of n
processors. The results confirm that the process of LTL-X model checking can
be parallelised quite efficiently. This speeds up the verification, in the best case
up to n times. Also the results show that these examples are not verifiable with
Spin because it runs out of memory. (We did not verify the Buf(n) system with
Spin because it was modelled directly as an M-net).

Table 2. Experimental results for the parallel mode.

Net Spin Punf(1) Punf(2)

Com(20,3) mem 8.58 6.01
Com(22,3) mem 11.51 8.51
Com(25,3) mem 17.29 12.84
Par(20,100) mem 8.60 4.84
Par(20,150) mem 31.98 18.28
buf(20) — 22.70 16.95
buf(25) — 142.72 89.40
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